RELAZIONE DI INVARIANZA IDRAULICA

Il progetto prevede la realizzazione delle opere di raccolta, ritenzione ed infiltrazione delle acque meteoriche di dilavamento della superficie stradale prevista all'interno del progetto della "Variante Nord alla SP 216 "Masate-Gessate" e variante Ovest alla SP 176 "Gessate-Bellusco" in Comune di Gessate - LOTTO 1" di classe di criticità idraulica A.

L'intervento interessa una superficie complessiva A_{tot} di 24.000 m² suddivisa in:

Superficie: Coeff. di deflusso

 $A_1 = 12.000 \text{ m}^2$ superfice impermeabilizzata (asfaltature, cordolature, ...) $\varphi_1 = 1$

 $A_2 = 0$ superficie semipermeabile $\varphi_2 = 0.7$

 A_3 = 12.000 mg circa di superficie permeabile (banchina, rilevato stradale, ...) $\varphi_3 = 0.3$

Il coefficiente di deflusso medio è calcolato come:

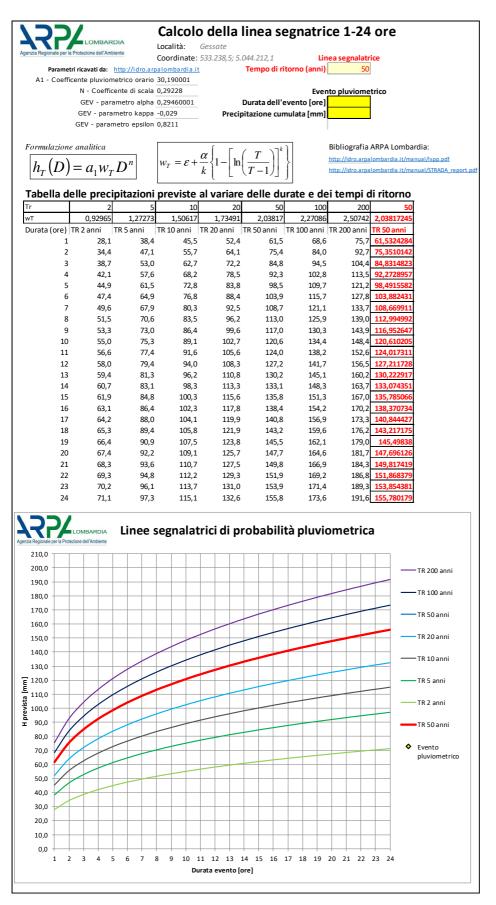
$$\varphi_{mp} = \frac{A_1 \cdot \varphi_1 + A_2 \cdot \varphi_2 + A_3 \cdot \varphi_3}{A_{tot}} = 0,65$$

La superficie impermeabile complessiva è pari a: $A_{imp} = \varphi_{mp}.A_{tot} = 15600~m^2$

Stante la classe di criticità idraulica, la dimensione complessiva dell'intervento e il valore del coefficiente di deflusso l'intervento, l'intervento ricade nella classe di intervento di "impermeabilizzazione potenziale alta" per la quale è prevista la procedura di calcolo dettagliata per i volumi da dedicare alle opere di invarianza.

Ī					MODALITÀ DI CALCOLO AMBITI TERRITORIALI (articolo 7)				
	CI	ASSE DI INTERVENTO	SUPERFICIE INTERESSATA	COEFFICIENTE DEFLUSSO					
	V.	MODE DI INTERVENTO	DALL'INTERVENTO	MEDIO PONDERALE	Ares A, B	Aree C			
	0	Impermeabilizzazione potenziale qualsiasi	≤ 0,01 ha (≤ 100 mq)	qualsiasi	Requisiti minimi ar	icolo 12 comma 1			
	1	Impermeabilizzazione potenziale bassa	da > 0,01 a ≤ 0,1 ha (≤ 1.000 mq)	≤ 0,4	Requisiti minimi ar	ticolo 12 comma 2			
			da > 0,01 a ≤ 0,1 ha (≤ 1.000 mq)	> 0,4					
	2	Impermeabilizzazione potenziale media	da > 0,1 a ≤ 1 ha (da > 1.000 a ≤ 10.000 mq)	qualsiasi	Metodo delle sole piogge (vedi articolo 11, comma				
			da > 1 a ≤ 10 ha (da > 10.000 a ≤ 100.000 mg)	≤ 0,4	2, lettera d)	Requisiti minimi articolo 12 comma 2			
	3	Impermeabilizzazione	da > 1 a ≤ 10 ha (da > 10.000 a ≤100.000 mq)	> 0,4	Procedura dettagliata (vedi				
		potenziale alta	> 10 ha (> 100.000 mq)	qualsiasi	articolo 11, comma 2, lettera d)				

Il valore minimo delle opere di invarianza è pari a 800 m³/ha di superficie impermeabile, ovvero pari


$$w_0 = 800.0,65.\frac{24000}{10000} = 1248 \, m^3$$

La portata massima scaricabile in un corpo superficiale o in fognatura è pari a 10 l/s.ha di superficie impermeabile ovvero pari a:

$$Q_{u,lim} = 10.0,65 \cdot \frac{24000}{10000} = 15,6 \ l/s$$

Per il sito oggetto di intervento sono stati ricavati i dati della curva di possibilità pluviometrica dal sito idro.arpalombardia.it e che si riportano nella pagina seguente.

In particolare, le opere di invarianza idraulica saranno dimensionate per tempo di ritorno T pari a 50 anni e saranno verificati i franchi di sicurezza per 100 anni.

Stante le buone caratteristiche di permeabilità dei suoli ai sensi dell'art. 5 comma 3 del RR 7/2017 lo smaltimento dei volumi invasati avverrà mediante infiltrazione nel suolo e negli strati superficiali del sottosuolo evitando lo scarico in corpo idrico o in fognatura comunale.

Il sistema di raccolta, ritenzione e infiltrazione delle acque di pioggia sarà costituito da un fosso drenante sui due lati della strada di forma trapezoidale di base minore 0,5 m, base maggiore 1,5 m e altezza 0,5 m e di pendenza di circa 0,1 % con recapito finale in un sistema di ritenzione e dispersione posizionato centralmente alla rotonda costituito da celle in materiale plastico di dimensioni in pianta di 20x20 m e altezza di circa 2 m.

Per il calcolo del fosso drenante e del sistema di dispersione si è fatto riferimento allo "Standard DWA-A 138E Planning, Construction and Operation of Facilities for the Percolation of Precipitation Water".

In particolare, per il fosso drenante la lunghezza necessaria alla ritenzione e infiltrazione delle acque di pioggia può essere ricavata come:

$$I_{\text{IT}} = \frac{A_{\text{imp}} \cdot 10^{-7} \cdot r_{\text{D(n)}} - Q_{\text{Thr}}}{\frac{b_{\text{IT}} \cdot h_{\text{|T}} \cdot s_{\text{PIT}}}{D \cdot 60 \cdot f_{\text{s}}} + \left(b_{\text{|T}} + \frac{h_{\text{|T}}}{2}\right) \cdot \frac{k_{\text{f}}}{2}}$$

e il conseguente volume necessario del fosso drenante come:

$$V_{\rm IT} = \left[A_{\rm imp} \cdot 10^{-7} \cdot r_{\rm D(n)} - (b_{\rm IT} + \frac{h_{\rm IT}}{2}) \cdot I_{\rm IT} \cdot \frac{k_{\rm f}}{2} - Q_{\rm Thr} \right] \cdot D \cdot 60 \cdot f_{\rm S}$$

dove:

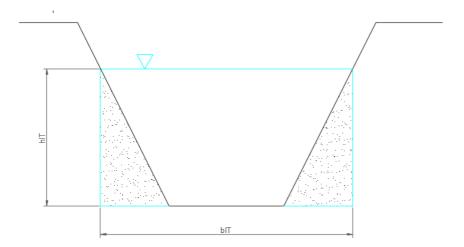
 A_{imp} : area equivalente impermeabile ovvero l'area complessiva dell'intervento ridotta del coefficiente di deflusso medio.

 $r_{D(n)}$: coefficiente udometrico espresso in l/s.ha

 Q_{Thr} : portata in uscita in I/s, in questo caso posta pari a 0 in quanto non si prevede scarico verso recettori

 b_{IT} : larghezza trincea in m

 h_{IT} : altezza della trincea in m


 s_{PIT} : coefficiente riempimento del volume di accumulo

D: durata dell'evento di pioggia in minuti

 f_s : fattore di sovraccarico

 k_f : conducibilità in m/s

Per il fosso drenante avendo forma trapezoidale h_{IT} coincide con l'altezza del pelo libero nel canale e b_{IT} pari alla larghezza della base maggiore trapezoidale corrispondente come da figura seguente dove per le sezioni sature adiacenti al canale si è considerata una porosità efficacie e quindi un indice di riempimento s_{IT} pari a 0,2.

Con questo schema di sezione è possibile dimostrare che l'indice di riempimento del volume di accumulo è pari a:

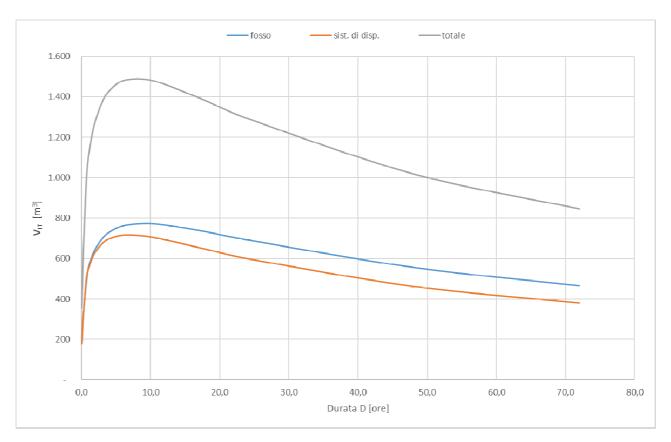
$$s_{PlT} = 1 - (1 - s_{lT}) \frac{h_{lT}}{b_{lT}}$$

Nel caso del canale disperdente è stata considerata una conducibilità del terreno cautelativa che tenga in conto anche del progressivo effetto di littatura della superficie e quindi di riduzione della capacità di dispersione, ovvero un k_f pari a 5.10⁻⁶ m/s.

Per quanto riguarda il sistema di dispersione si è considerato di utilizzare un sistema costituito da celle di elementi modulari plastici per i quali si considera un indice dei vuoti s_{PIT}pari a 0,96.

In fase progettuale è stata fissata la larghezza complessiva dell'elemento disperdente b_{IT} pari a 20 m, l'altezza dell'elemento h_{lT} pari a 3 moduli sovrapposti, ovvero 1,98 m considerando una conducibilità dei terreni adiacenti pari a 5.10⁻⁵ m/s, valore cautelativo rispetto alle caratteristiche del terreno per tenere un conto di un graduale intasamento del materasso infiltrante.

Il fattore di sovraccarico fs è stato posto pari a 1,2 per tenere in conto della distribuzione dell'intensità di pioggia non uniforme all'interno della durata D dell'evento.


Il calcolo è proceduto ripartendo il quantitativo di pioggia tra i due sistemi di ritenzione e dispersione in misura uguale e, nell'ipotesi di ignorare gli effetti di trasformazioni afflussi-deflussi, considerando uno ietogramma di progetto costante, questo equivale a dimensionare i due sistemi singolarmente come se ognuno operasse su metà della superficie interessata.

Per ogni sistema si è proceduto al calcolo della lunghezza della trincea e del volume dell'elemento drenante per diverse durate di pioggia identificando la durata critica D_c per cui si trova il valore di volume massimonecessario.

In particolare, si è ricavato:

<u>Fosso drenante</u>: $D_c = 9$ ore $V_{IT} = 773,75 \text{ m}^3$ $I_{IT} = 2.400 \text{ m}$ <u>Sistema disperdente</u>: $D_c = 6$ ore $V_{IT} = 716,12 \text{ m}^3$ $I_{IT} = 18,84 \text{ m}$

Come si può notare le durate critiche sono differenti, pertanto, l'utilizzo combinato dei due sistemi comporta la necessità di un volume inferiore alla somma algebrica dei due volumi come risulta da grafico seguente:

Ragionando comunque in favore di sicurezza si considererà la somma algebrica dei due volumi massimi calcolati ovvero pari a 1736 m³, volume superiore al volume minimo calcolato secondo il RR 7/2017 pari a 1248 m³.

VERIFICA TEMPI DI SVUOTAMENTO

I volumi di invarianza devono essere svuotati entro le 48 ore per essere disponibili per un successivo evento meteorico.

Ragionando sempre in favore di sicurezza si è proceduto alla verifica autonoma dei due sistemi da cui risulta:

Canale disperdente: tempo di svuotamento in 26,04 ore < 48 ore verificato

Sistema di dispersione: tempo di svuotamento in 20,78 ore < 48 ore verificato

VERIFICA DEI FRANCHI DI SICUREZZA a T = 100 anni

Per quanto riguarda il canale disperdente si è proceduto utilizzando le formule di dimensionamento ricavando l'altezza del pelo libero nel canale h_{IT} che mantenga invariata la lunghezza del canale ed ottenendo $h_{\text{IT}} = 0.38$ m, valore inferiore all'altezza del canale pari a 0,5 m e quindi verificato.

Per quanto riguarda il sistema di dispersione si è preferito visto la differenza limitata dimensionare il sistema disperdente per T=100 anni ottenendo una leggera differenza di lunghezza dell'elemento ovvero pari a $h_{\text{IT}}=20,99$ m.

Di seguito si riportano i fogli di calcolo dei singoli elementi.

VERIFICA IDRAULICA DEL CANALE

Si è proceduto alla verifica idraulica dei canali di scolo nell'ipotesi cautelativa che non siano disperdenti.

Calcolo delle portate di pioggia

Per il calcolo delle portate di pioggia è stato utilizzato il metodo italiano dell'invaso lineare dove la portata massima di pioggia è data da:

$$Q = u \cdot A$$

dove:

A = area totale che insiste sul tronco in esame (ha);

$$u = \frac{2168 \cdot n \cdot (\varphi \cdot a)^{\frac{1}{n}}}{w^{\frac{1}{n}-1}}$$

u =coefficiente udometrico (l/s.ha) calcolato come:

dove:

 ϕ = coefficiente di afflusso medio;

a e n = coefficienti della curva di possibilità climatica;

w = volume specifico di invaso (m).

Il volume specifico di invaso è stato calcolato come:

$$w = \frac{W_{tot}}{A_{tot}}$$

con:

$$W_{tot} = W_0 \cdot A_p + W_p + \frac{u}{\varphi} \cdot \sum_{i=1}^n W_i \cdot \frac{\varphi_i}{u_i}$$

dove:

Atot = area totale che insiste sul tronco (come somma dell'area di pertinenza del tronco in oggetto e delle aree dei tronchi di monte (ha);

Ap= area di pertinenza del tronco in oggetto (ha);

wp = volume dei piccoli invasi dell'area di pertinenza del tronco in oggetto (m³/ha);

WP = volume di invaso proprio del tronco in oggetto (m³), stimato come prodotto dell'area bagnata per la lunghezza del tronco;

φ, u = coefficiente di afflusso e coefficiente udometrico del tronco in oggetto;

фj ,uj, Wj = coefficiente di afflusso, coefficiente udometrico e volume di invaso totale dei tronchi a monte di quello in oggetto

Il volume dei piccoli invasi wprappresenta il volume del velo idrico presente sulle superfici scolanti, nonché i volumi invasati nelle capacità secondarie (pozzetti, fognoli, caditoie, ecc...) ed in questo caso è stato assunto pari a 40 m³/ha.

Calcolo idraulico del canale

Per il calcolo idraulico delle condotte si è utilizzata la formula di moto uniforme di Chézy con la stima del coefficiente di conduttanza tramite la formula empirica di Gauckler-Strickler, ovvero:

$$Q = K \cdot A \cdot R^{\frac{2}{3}} \cdot \sqrt{i}$$

dove:

A = sezione bagnata (m²);

R = raggio idraulico (m);

i = pendenza della condotta.

La verifica ha prodotto il risultato riportato nella tabella seguente da cui si desume una portata massima per ciascun canale in tempo di pioggia con T = 50 anni di 77,44 l/s a cui corrisponde un h = 0,29 m con un'altezza di canale utile pari a 0,5 m pertanto verificato.

а	n	wp	Ks1	n ₀	DI																
[m/h ⁿ]		[mc/mq]			l/ab.d																
0,0615	0,470	0,004	35	0,47	350																
						Are	e propri	ie		Tot	tali						Bian	ica			
tronco	Ab	L	Н	i	Sez	Atot	Arid	φ	Atot	Arid	φm	Abtot	h	L	Vmax	Qmax	u	W	Wtot	wtot	Qpioggia
		[m]	[mm]		[mq]	[ha]	[mq]		[ha]	[ha]				[m]	[m/s]	[l/s]	[l/s.ha]	[mc]	[mc]	[mc]/[mq]	
SP1	0	1200	800	0,10%	0,50240	0,60	0,60	1,00	1,20	0,78	0,65	-	0,29	0,50	0,34	77,44	64,54	271,22	319,22	0,0266	77,44
						0,60	0,18	0,30													
							0,00														
						1,20	0,78	0,65													

Elemento: FOSSO DISPERDENTE	Durata pioggia	$r_{D(n)}$ V_{IT}	L	STEP 1
Tempo di ritorno T = 50 anni Parametro a pioggia <1 ora a = 61,53243 Parametro n pioggia <1 ora n = 0,47085 Parametro a pioggia >1 ora a = 61,53243 Parametro n pioggia >1 ora n = 0,292280 Coefficiente di infiltrazione k = 0,000005 m/sec Superficie S = 7.800 mg	5 min 0,083 or 10 min 0,167 or 15 min 0,250 or 20 min 0,333 or 30 min 0,500 or 45 min 0,750 or	re 441,13 245,85 re 355,95 296,43 re 305,68 338,15 re 246,66 406,21	m 552,33 762,57 919,47 1.048,87 1.259,97 1.508,02	$I_{\text{IT}} = \frac{A_{\text{imp}} \cdot 10^{-7} \cdot r_{\text{D(n)}} - Q_{\text{Thr}}}{\frac{b_{\text{IT}} \cdot h_{\text{IT}} \cdot s_{\text{PIT}}}{D \cdot 60 \cdot f_{\text{S}}} + \left(b_{\text{IT}} + \frac{h_{\text{IT}}}{2}\right) \cdot \frac{k_{\text{f}}}{2}}$ STEP 2
Impermeabile 1 = 6.000 mq semipermeabile 0,7 = $-$ mq Permeabile 0,3 = 6.000 mq	60 min 1,000 or 90 min 1,500 or 120 min 2,000 or 180 min 3,000 or 240 min 4,000 or	re 170,92 550,57 re 128,29 606,48 re 104,65 645,76 re 78,55 697,58	1.707.76	$V_{\text{IT}} = \left[A_{\text{imp}} \cdot 10^{-7} \cdot r_{\text{D(n)}} - (b_{\text{IT}} + \frac{h_{\text{IT}}}{2}) \cdot I_{\text{IT}} \cdot \frac{k_{\text{f}}}{2} - Q_{\text{Thr}} \right] \cdot D \cdot 60 \cdot f_{\text{S}}$
Larghezza trincea $b_{IT} = 1,20 \text{ m}$ Altezza trincea $h_{IT} = 0,35 \text{ m}$ coefficiente volume di accumulo $s_{PIT} = 0,77$	$s_{PlT} = 1 - (1 - s_{lT}) \frac{h_{lT}}{b_{lT}}$ $360 \text{ min} \qquad 6,000 \text{ or} \qquad 540 \text{ min} \qquad 9,000 \text{ or} \qquad 12,000 \text{ or} \qquad 1080 \text{ min} \qquad 18,000 \text{ or} \qquad 1440 \text{ min} \qquad 24,000 \text{ or} \qquad 2880 \text{ min} \qquad 48,000 \text{ or} \qquad 4320 \text{ min} \qquad 72,000 \text{ or} \qquad 320 \text{ min} \qquad 320 \text{ min} \qquad 320 \text{ or} \qquad 320 \text{ min} \qquad 320 \text{ or} \qquad 320 \text{ min} \qquad 320 \text{ or} \qquad 3$	re 48,09 761,71 re 36,10 773,75 re 29,45 766,69 re 22,10 732,70 re 18,03 692,33 re 11,04 555,88	2.362,68 2.400,00 2.378,13 2.272,68 2.147,48 1.724,22 1.443,94	GERMAN DWA-Rules and Standards Standard DWA-A 138E
Accelerazione del deflusso $Q_{Thr} = -\frac{1}{\text{sec}}$ Accelerazione del deflusso $Q_{Thr} = 0$ $\frac{1}{\text{sec}}$ Fattore di sovraccarico $f_s = 1,2$ Volume di accumulo richiesto $V_{sw} = 773,75$ mc	a Lungh	hezza richiesta L =	2.400,00 m	Planning, Construction and Operation of Facilities for the Percolation of Precipitation Water April 2005
Volume ottenuto V = 773,75 mc Superficie disperdente utile (base + 1/4 lato lungo) Sdisp = 3.301,76 mq	1. 6	900,00 800,00 700,00 600,00 E 500,00 \(\frac{1}{2}\) 400,00		
Tempo di svuotamento t = 26,04 ore Velocità di infiltrazione Qs = 8,25 l/sec	$te[s] = V_{trench} / (A_{infiltration} * \frac{kf}{2})$ $\frac{kf\left[\frac{m}{s}\right]}{2} * AS[m2] * 1000 = Qs\left[\frac{l}{s}\right]$	> 300,00 200,00 100,00 - 0	10 20 30	40 50 60 70 80 Durata D [ore]

Elemento: FOSSO DISPERDENTE			Dui	rata pioggia	$\mathbf{r}_{D(n)}$	\mathbf{V}_{IT}	L	STEP 1
Tempo di ritorno Parametro a pioggia < 1 o Parametro n pioggia < 1 o Parametro a pioggia > 1 o Parametro n pioggia > 1 o Coefficiente di infiltrazione Superficie Impermeabile	ra a = ra n = ra a = ra n = k = S = 1 =	100 anni 68,55716 0,47085 68,55716 0,292280 0,000005 m/sec 7.800 mq 6.000 mq	5 m 10 m 15 m 20 m 30 m 45 m 60 m	in 0,083 ore in 0,167 ore in 0,250 ore in 0,333 ore in 0,500 ore in 0,750 ore	709,26 491,49 396,58 340,58 274,82 221,75 190,44	mc 198,45 274,06 330,54 377,15 453,29 542,94 615,31	m 541,23 747,44 901,47 1.028,59 1.236,25 1.480,75 1.678,12	$I_{\text{IT}} = \frac{A_{\text{imp}} \cdot 10^{-7} \cdot r_{\text{D(n)}} - Q_{\text{Thr}}}{\frac{b_{\text{IT}} \cdot h_{\text{IT}} \cdot s_{\text{PIT}}}{D \cdot 60 \cdot f_{\text{S}}} + \left(b_{\text{IT}} + \frac{h_{\text{IT}}}{2}\right) \cdot \frac{k_{\text{f}}}{2}}$ STEP 2
Permeabile coefficiente volume di accumulo Larghezza trincea Altezza trincea	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- mq 6.000 mq 0,20 1,26 m 0,38 m	90 m 120 m 180 m 240 m 360 m 540 m	2,000 ore 3,000 ore in 4,000 ore in 6,000 ore in 9,000 ore	142,93 116,60 87,51 71,39 53,58 40,22	678,77 723,73 783,83 821,37 861,64 880,00	1.851,19 1.973,81 2.137,72 2.240,12 2.349,92 2.400,00	$V_{\text{IT}} = \left[A_{\text{imp}} \cdot 10^{-7} \cdot r_{\text{D(n)}} - (b_{\text{IT}} + \frac{h_{\text{IT}}}{2}) \cdot I_{\text{IT}} \cdot \frac{k_{\text{f}}}{2} - Q_{\text{Thr}} \right] \cdot D \cdot 60 \cdot f_{\text{S}}$ $G \in R M \land N$ $DWA-Rules and Standards$
coefficiente volume di accumulo	S _{PIT} =	0,76	$s_{PlT} = 1 - (1 - s_{lT}) \frac{n_{lT}}{b_{lT}}$ 720 m 1080 m 1440 m 2880 m 4320 m	in 18,000 ore in 24,000 ore in 48,000 ore	32,81 24,62 20,09 12,30 9,23	875,88 842,89 800,57 650,45 547,91	2.388,78 2.298,80 2.183,39 1.773,96 1.494,29	Standard DWA-A 138E Planning, Construction and Operation of Facilities
Accelerazione del deflusso Accelerazione del deflusso Fattore di sovraccarico Volume di accumulo richiesto	$Q_{Thr} = Q_{Thr} = f_s = V_{Sw}$	- I/sec 0 I/sec*ha 1,2 880,00 mc	a	Lunghe	zza richiesta	L=	2.400,00 m	for the Percolation of Precipitation Water April 2005
Volume ottenuto Superficie disperdente utile (base + 1/4 lato lungo)	V = Sdisp =	880,00 mc 3.494,36 mq			1.000,00			
Tempo di svuotamento Velocità di infiltrazione	t = Qs =	27,98 ore 8,74 l/sec	$te[s] = V_{trench} / (A_{infiltration} * kf)$ $\frac{kf \left[\frac{m}{s}\right]}{2} * AS[m2] * 1000 = Qs \left[\frac{l}{s}\right]$	f/ ₂)	± 400,00 200,00 - 0		10 20	30 40 50 60 70 80

Durata D [ore]

Elemento: SISTEMA DISPERDENTE			Durata	pioggia	r _{D(n)} l/(s*ha)	V _{IT} mc	L m	STEP 1
Tempo di ritorno	T =	50 anni	D					$A \cdot \cdot \cdot 10^{-7} \cdot r_{-4}$
Parametro a pioggia < 1 ora	a a =	61,53235	5 min	0,083 ore	636,58	177,87	4,68	$I_{IT} = \frac{A_{imp} \cdot 10^{-7} \cdot r_{D(n)}}{\frac{b_{IT} \cdot h_{IT} \cdot s_{PIT}}{D \cdot 60 \cdot f_{D}} + (b_{IT} + \frac{h_{IT}}{2}) \cdot \frac{k_{f}}{2}}$
Parametro n pioggia < 1 ora	a n =		10 min	0,167 ore	441,13	245,30	6,45	$b_{\rm IT} \cdot h_{\rm IT} \cdot s_{\rm PIT}$ $h_{\rm IT} \cdot k_{\rm f}$
Parametro a pioggia > 1 ora			15 min	0,250 ore	355,95	295,44	7,77	$\frac{D \cdot 60 \cdot f_0}{D \cdot 60 \cdot f_0} + (D_{ T} + \frac{D}{2}) \cdot \frac{D}{2}$
Parametro n pioggia > 1 ora			20 min	0,333 ore	305,68	336,65	8,86	2 00 18 2 2
Coefficiente di infiltrazione	k =		30 min	0,500 ore	246,66	403,53	10,61	
Superficie	S =	•	45 min	0,750 ore	209,52	506,83	13,33	STEP 2
Impermeabile	1 =		60 min	1,000 ore	170,92	543,53	14,30	
•),7 =	· ·	90 min	1,500 ore	128,29	595,17	15,66	$\begin{bmatrix} - & h & k \end{bmatrix}$
),3 =		120 min	2,000 ore	104,65	630,13	16,58	$V_{\text{IT}} = \left[A_{\text{imp}} \cdot 10^{-7} \cdot r_{D(n)} - \left(b_{\text{IT}} + \frac{h_{\text{IT}}}{2} \right) \cdot I_{\text{IT}} \cdot \frac{k_{\text{f}}}{2} \right] \cdot D \cdot 60 \cdot f_{\text{S}}$
	.,-		180 min	3,000 ore	78,55	673,53	17,72	
			240 min	4,000 ore	64,08	697,34	18,34	
			360 min	6.000 ore	48,09	716,12	18,84	GERMAN
coefficiente volume di accumulo	S _{IT} =	0,96	540 min	9,000 ore	36,10	712,37	18,74	
occincione volume al accumulo	-11	0,00		12,000 ore	29,45	694,06	18,26	DWA-Rules and Standards
Larghezza trincea	b _{IT} =	20 m		18,000 ore	22,10	646,54	17,01	
Numero di strati	N =			24,000 ore	18,03	599,76	15,78	
Altezza singolo modulo	h' _{IT} =			48,000 ore	11,04	462,31	12,16	
•	h _{iT} =	•		•	•	•	•	
Altezza trincea	II _{IT} =	1,98 m	4320 min	72,000 ore	8,29	379,76	9,99	Standard DWA-A 138E
								Planning, Construction and Operation of Facilities
Accelerazione del deflusso	$Q_{Thr} =$	- I/sec						for the Percolation of Precipitation Water
Accelerazione del deflusso	$Q_{Thr} =$	0 l/sec*ha		Lunghez	za richiesta	L =	18,84 m	Tor the recolation of rrecipitation water
Fattore di sovraccarico	f _s =	1,2						
				aı	rrotondato a	L =	19,20 m	1. M. 2012
Volume di accumulo richiesto	V _{sw} =	716,12 mc					·	April 2005
					800,00			
Volume ottenuto	V =	729,91 mc			700,00			
					600,00			
Superficie disperdente utile	0	200.24		33	500,00			
(base + 1/4 lato lungo)	Sdisp =	390,34 mq						
,			kf.	>	300,00			
Tempo di svuotamento	t =	20,78 ore	$te[s] = V_{trench} / (A_{infiltration} * {}^{Kf}/_2)$		200,00			
•		,			100,00			
Velocità di infiltrazione	Qs =	9,76 l/sec	$\frac{kf\left[\frac{m}{s}\right]}{2} * AS[m2] * 1000 = Qs\left[\frac{l}{s}\right]$					
		·	${2}$ * A5 [m2] * 1000 = Qs [- s]		0	10	20	30 40 50 60 70 80
								Durata D [ore]

Elemento: SISTEMA DISPERDENTE			Durata	pioggia	r _{D(n)} I/(s*ha)	V _{IT} mc	L m	STEP 1
Tempo di ritorno	Т	= 50	nni D					$\Delta = 10^{-7} \cdot r_{-1}$
Parametro a pioggia < 1 ora	а	= 68,55716	5 min	0,083 ore	709,26	198,17	5,21	$I_{IT} = \frac{A_{imp} \cdot 10^{-7} \cdot r_{D(n)}}{\frac{b_{IT} \cdot h_{IT} \cdot s_{PIT}}{D \cdot 60 \cdot f_{D}} + (b_{IT} + \frac{h_{IT}}{2}) \cdot \frac{k_{f}}{2}}$
Parametro n pioggia < 1 ora	n	= 0,47085	10 min	0,167 ore	491,49	273,30	7,19	$b_{\rm IT} \cdot h_{\rm IT} \cdot s_{\rm PIT}$ $h_{\rm IT} \cdot k_{\rm f}$
Parametro a pioggia > 1 ora	а	= 68,55716	15 min	0.250 ore	396,58	329,17	8,66	$\frac{1}{D \cdot 60 \cdot f_0} + (D_{\text{IT}} + \frac{1}{2}) \cdot \frac{1}{2}$
Parametro n pioggia > 1 ora		= 0,292280	20 min	0,333 ore	340,58	375,09	9,87	2 30 18 2 2
Coefficiente di infiltrazione	k	= 0,00005		0,500 ore	274,82	449,60	11,83	
Superficie	S	= 7.800		0,750 ore	233,44	564,69	14,85	STEP 2
Impermeabile		= 6.000	•	1,000 ore	190,44	605,58	15,93	• • • •
semipermeabile 0,	7		ng 90 min	1,500 ore	142,93	663,12	17,44	$\begin{bmatrix} - & h & k \end{bmatrix}$
Permeabile 0,		= 6.000	•	2,000 ore	116,60	702,07	18,47	$V_{\rm IT} = \left[A_{\rm imp} \cdot 10^{-7} \cdot r_{\rm D(n)} - \left(b_{\rm IT} + \frac{h_{\rm IT}}{2} \right) \cdot I_{\rm IT} \cdot \frac{k_{\rm f}}{2} \right] \cdot D \cdot 60 \cdot f_{\rm S}$
		2.222	180 min	3,000 ore	87,51	750,43	19,74	
			240 min	4,000 ore	71,39	776,95	20,44	
			360 min	6,000 ore	53,58	797,88	20,99	GERMAN
coefficiente volume di accumulo	S _{IT}	= 0,96	540 min	9,000 ore	40,22	793,69	20,88	
	-11	0,00	720 min	12,000 ore	32,81	773,29	20,34	DWA-Rules and Standards
Larghezza trincea	b _{IT}	= 20		18,000 ore	24,62	720,36	18,95	
Numero di strati		= 3	1440 min	24,000 ore	20,09	668,23	17,58	
Altezza singolo modulo	h' _{IT}			48,000 ore	12,30	515,09	13,55	
Altezza trincea	h _{IT}	•		72,000 ore	9,23	423,11	11,13	
Altezza tillicea	''IT	- 1,90	1 4520 11111	72,000 die	9,23	423,11	11,13	Standard DWA-A 138E
	_							Planning, Construction and Operation of Facilities
Accelerazione del deflusso	-1111	-						for the Percolation of Precipitation Water
Accelerazione del deflusso	Q_{Thr}	= 0	sec*ha	Lunghez	za richiesta	L =	20,99 m	Tor die reconation of receptation water
Fattore di sovraccarico	f_s	= 1,2						
				а	rrotondato a	L =	21,60 m	A. J. poor
Volume di accumulo richiesto	V_{sw}	= 797,88	10					April 2005
					900,00			
Volume ottenuto	٧	= 821,15	nc		800,00			
					700,00			
Superficie disperdente utile	C ::	_ 420.42		<u> </u>	_ 600,00 E_ 500,00			
(base + 1/4 lato lungo)	Sdisp	= 439,13	19	_	_			
			kf,	>	300,00			
Tempo di svuotamento	t	= 20,78	$te[s] = V_{trench} / (A_{infiltration} * K_f / 2)$)	200,00			
·		•			100,00			
Velocità di infiltrazione	Qs	= 10,98	$\frac{kf\left[\frac{m}{s}\right]}{2} * AS[m2] * 1000 = Qs \begin{bmatrix} l \\ - \end{bmatrix}$					
			$\frac{1}{2} * A5[m2] * 1000 = Qs \begin{bmatrix} -1 \\ s \end{bmatrix}$		0	10	20	30 40 50 60 70 80
								Durata D [ore]